## MARK SCHEME for the October/November 2014 series

## 0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | Cambridge IGCSE – October/November 2014 | 0580     | 23    |

## Abbreviations

| cao  | correct answer only        |
|------|----------------------------|
| dep  | dependent                  |
| FT   | follow through after error |
| isw  | ignore subsequent working  |
| oe   | or equivalent              |
| SC   | Special Case               |
| nfww | not from wrong working     |
|      |                            |

soi seen or implied

| Qu. | Answers                          | Mark | Part Marks                                                                                                                                                                 |  |  |
|-----|----------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | 2870                             | 2    | <b>M1</b> for 350 × 8.2                                                                                                                                                    |  |  |
| 2   | $0.34  0.7^3  0.6^2  \sqrt{0.6}$ | 2    | <b>M1</b> for decimal conversion: 0.7 [7] or 0.8 for $\sqrt{0.6}$ and 0.36 for 0.6 <sup>2</sup> and 0.343 for 0.7 <sup>3</sup> or <b>B1</b> for three in the correct order |  |  |
| 3   | $2.4 \times 10^{8}$              | 2    | <b>B1</b> for 240 000 000 oe<br>or <b>B1</b> for $k \times 10^8$ or $2.4 \times 10^k$                                                                                      |  |  |
| 4   | 30                               | 2    | <b>M1</b> for $2x + 3x + 4x + 90 = 360$ oe                                                                                                                                 |  |  |
| 5   | 48                               | 2    | <b>M1</b> for $52 \div 65 \times 60$ oe implied by 0.8                                                                                                                     |  |  |
| 6   | 9.5 or $\frac{19}{2}$            | 3    | <b>M2</b> for $2x = (8 \times 3) - 5$ or better oe<br>or <b>M1</b> for $2x + 5 = 8 \times 3$ or better                                                                     |  |  |
| 7   | 160                              | 3    | M2 for $180 - \frac{360}{18}$ or $\frac{180 \times (18 - 2)}{18}$ oe<br>or M1 for $180 \times (18 - 2)$ or $\frac{360}{18}$                                                |  |  |
| 8   | $8 + (y-2)^2$ oe final answer    | 3    | M1 for $y - 2 = \sqrt{(x - 8)}$<br>M1 for squaring both sides completed correctly<br>M1 for adding <i>their</i> 8 completed correctly on answer<br>line                    |  |  |
| 9   | 4                                | 3    | M2 for $6(3+5) = y(7+5)$ oe<br>or<br>M1 for $y = \frac{k}{x+5}$ oe<br>A1 for $k = 48$                                                                                      |  |  |
| 10  | 13891.5[0]                       | 3    | M2 for $12000 \times \left(1 + \frac{5}{100}\right)^3$ oe<br>or M1 for $12000 \times \left(1 + \frac{5}{100}\right)^n$ oe $n \ge 2$                                        |  |  |

| Pa | ge 3 |                                                            | Schem  |                                                                                                                                                                                                                                                                     | Syllabus       | Paper      |
|----|------|------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
|    |      | Cambridge IGCSE –                                          | Octobe | er/November 2014                                                                                                                                                                                                                                                    | 0580           | 23         |
|    |      |                                                            |        |                                                                                                                                                                                                                                                                     |                |            |
| 11 | (a)  | 608 400 cao                                                | 2      | <b>M1</b> for $\frac{1}{4} \times 39^2 \times (39+1)^2$                                                                                                                                                                                                             |                |            |
|    | (b)  | $2n^2(n+1)^2$ oe                                           | 1      |                                                                                                                                                                                                                                                                     |                |            |
| 12 | (a)  | Complete circle centre <i>E</i> radius 3cm                 | 1      |                                                                                                                                                                                                                                                                     |                |            |
|    | (b)  | Correct ruled bisector with two pairs of correct arcs      | 2      | <b>B1</b> for correct bisector with no/wrong arcs                                                                                                                                                                                                                   |                |            |
|    | (c)  |                                                            | 1      | dep on attempt at bisector of C                                                                                                                                                                                                                                     | 2 and enclosed | l region   |
| 13 |      | $\frac{16x^2 + 18x + 9}{6x}$ final answer                  | 4      | M2 for 9 [+] $4x^2$ [+] $18x$ [+] 12<br>or M1 for 2 of these<br>and M1FT for adding their fou<br>together correctly<br>and B1 for denominator $6x$<br>to a maximum of 3 marks                                                                                       |                | s'         |
| 14 | (a)  | $\frac{1}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}  \text{oe}$ | 2      | M1 for $\frac{1}{2}(\overrightarrow{AO} + \overrightarrow{OB})$ oe or co<br>route e.g. $\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BP}$<br>or $-\mathbf{a} + \mathbf{b} + \frac{1}{2} \overrightarrow{BA} = -\mathbf{a} + \mathbf{b} + \mathbf{b}$ |                | lified     |
|    | (b)  | $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ oe         | 2      | <b>M1</b> for $\overrightarrow{OA} + \overrightarrow{AQ}$ oe or corre                                                                                                                                                                                               | ct unsimplifi  | ed route   |
| 15 | (a)  | 19 2 1 8                                                   | 2      | <b>B1</b> for any two correct                                                                                                                                                                                                                                       |                |            |
|    | (b)  | 1 8 19 2                                                   | 2FT    | <b>B2FT</b> for a correct ft from (a)<br>or <b>B1FT</b> for any two correct o<br>from (a)                                                                                                                                                                           |                | ect two ft |
| 16 | (a)  | 64                                                         | 2      | <b>B1</b> for $[f(1) = ] 4$<br>or <b>M1</b> for $((x - 3)^2)^3$ or better                                                                                                                                                                                           |                |            |
|    | (b)  | 4x + 1 oe                                                  | 2      | <b>M1</b> for $x = \frac{y-1}{4}$ or $4y = x - $                                                                                                                                                                                                                    | 1              |            |
|    | (c)  | $\frac{x^3-1}{4}$ of final answer                          | 1      |                                                                                                                                                                                                                                                                     |                |            |
|    | (d)  | 3 nfww                                                     | 1      |                                                                                                                                                                                                                                                                     |                |            |

| Pa | ge 4 | Mark Scheme                                    |   | 10                                                                                                                                                                                                                     | Syllabus Paper  |          |  |
|----|------|------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--|
|    | ·    |                                                |   |                                                                                                                                                                                                                        | 0580            | 23       |  |
| 17 | (a)  | 3.08 to 3.22 nfww                              | 2 | <b>B1</b> for 502.5 to 502.62 or 505                                                                                                                                                                                   | .7 to 505.8     |          |  |
|    | (b)  | $\frac{16}{200}$ oe                            | 2 | <b>B1</b> for 16 soi<br>or <b>M1</b> for $\frac{their 16}{200}$                                                                                                                                                        |                 |          |  |
|    | (c)  | 18.5 26 3                                      | 2 | <b>B1</b> for 18.5 and 26 <b>B1</b> for 3                                                                                                                                                                              |                 |          |  |
| 18 | (a)  | 3                                              | 4 | <b>B3</b> for 3.536 to 3.54 as an ans<br>or<br><b>M2</b> for $2000 \div \frac{1}{3}\pi \times 6^2 \times 15$<br>or <b>M1</b> for $\frac{1}{3}\pi \times 6^2 \times 15$<br>and <b>SC1</b> for truncating <i>their</i> 3 |                 | e number |  |
|    | (b)  | 303 to 304                                     | 3 | M2 for 2000 – <i>their</i> 3 × <i>their</i> or M1 for <i>their</i> 3 × <i>their</i> volu                                                                                                                               |                 |          |  |
| 19 | (a)  | rotation<br>90 clockwise<br>[about] origin oe  | 3 | <b>B1</b> for each                                                                                                                                                                                                     |                 |          |  |
|    | (b)  | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ | 2 | M1 for any one column or row                                                                                                                                                                                           | v correct       |          |  |
|    | (c)  | Triangle at (3, 3), (6, 3) and (3, 5)          | 2 | M1 for any two vertices corre translated horizontally                                                                                                                                                                  | ct or correct a | nswer    |  |